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Abstract

The paper we have chosen has two main contributions. The first in-
troduces a hyperparameter 8 to the VAE architecture to encourage dis-
entangled latent representations. The second, is a quantification of dis-
entanglement between the dimensions of the learned latent space. We
successfully reproduce both these contributions. We also extend the work
with a new investigation, into the authors’ hypothesis that S-VAEs may
improve transfer learning performance. Our results do not show a sig-
nificant improvement in transfer learning performance. We discuss the
significance of our results and limitations in our method, which may stem
from our dataset choice and limited computational resources. Finally, we
suggest methods for investigating the transfer learning hypothesis with
more computational resources.
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1 Motivation

We have chosen this paper for three reasons. Firstly, we believe variational
autoencoders (VAEs) capture some of the most exciting ideas in current ML
research. They provide highly non-linear dimensionality reduction of high-
dimensional data, which can be seen as a method for learning abstract con-
cepts in an unsupervised manner. They also provide an unsupervised way of
approximating a distribution over any set of high-dimensional data, only re-
quiring a differentiable learning architecture to and from a latent space; this
seemed to us extremely powerful and worthy of exploration. Secondly, we be-
lieve that human interpretability of learned models is one of the most important
problems to work on in machine learning today. Modern ”black-box” learners
like most deep neural networks are frequently applied in influential positions.
The creation of interpretable models that can replace black-box models without
sacrificing performance will be essential to ensure reduce bias, ensure robust-
ness and provide accountability. There has therefore recently been dramatically
increasing interest in interpretable models [LPK20).

The goal of beta-VAE is not only to provide a latent space that can be
sampled from as VAEs already do, but also to provide disentangled dimensions
in the latent space. This is an important step towards human interpretability:
it enables interpreting a particular dimension in latent space as a particular
generating variable in the (usually unknown) generating distribution. Thirdly,
we saw in this paper an opportunity not only to reproduce the given results,
but also for testing the hypothesis given at the very end of the paper suggesting
that a disentangled latent space might allow for easier transfer learning (which
we suggest can be seen as machine interpretability of the latent space).

2 Theoretical framework $-VAE

This section is intended to clarify the corresponding section in the original paper
|[Hig+17]. We largely follow their reasoning and notation, with small modifica-
tions which we point out and justify.

Given a dataset, we assume that all datapoints x € RY are 4.i.d. according
to an underlying distribution D. A generative model gives a p.d.f. pg(x) — [0, 1]
that predicts P(x), where 6 are the model parameters. We also want to be able
to sample from py. Following a maximum likelihood approach, we maximise the
expected likelihood as a function of the model parameters:

argénax E.~p[po(x)] (1)

Now the B-VAE framework assumes that x is generated from a set of ground
truth generative factors v € RX and w € R¥ | where v are conditionally inde-
pendent, that is p(v|x) = [], p(vk|x). It aims at learning the joint distribution



of x ~ D and latent variables z € R™ for M > K, which should capture the
conditionally independent generative factors v in a disentangled manner, and
capture w in the remaining dimensions of z. From and the law of total
expectation we get

arggnax EonD [Bamplz[po(x]2)]] (2)

Since we do not have access to z ~ pg|x, we use another approximation, z ~
¢s|x, which we approximate again using a maximum likelihood approach:

arggrgax Eonp [Ezngylz[po(x2)]]

= argergax EznD [Ezngylzllog(po(x]2))]]

(3)

Now we must choose a prior distribution p(z). We choose z ~ N(0,1) as
sampling from this is simple and it encourages independence of dimensions in
order for z to capture the conditionally independent factors v in a disentangled
manner. We want the approximation ¢,4(z) to be close to this prior, which we
may express by requiring that the KL divergence between ¢,4(z) and p(z) be less
than some error bound e, resulting in a constrained optimization problem:

argmax [E,.p [Ez~q¢|x[logp9 (X‘Z)H
0,6 (4)
s.t. Drr(ge(zlx) || p(z) < e

We convert this constrained optimization problem to a strict one by adding a
slack term [ to the inequality constraint to get a loss function we can optimize:

argmax EonD[Eong,lzllogpe(x]2)]] — B+ Dicr(as(2lx) || p(2))  (5)

The authors arrive at this formulation using a KKT Lagrangian instead [Hig+17].
We think this might be misleading, since they provide no argument for manually
choosing the KKT multiplier (which corresponds to ) instead of performing the
corresponding dual optimization (which would include 8 in the variables to op-
timize over). While the main contribution of the paper is to vary 8 and observe
the results, this hyperparameter tuning does not correspond to the formal con-
strained optimization problem , but in optimizing an external measure such
as a qualitative or quantitative measure of disentanglement. Thus the KKT
formalization does not actually do anything towards justifying § as a hyperpa-
rameter. The approach we present here arrives at the same result, but makes
the manual choice for § more explicit by adding £ as a slack term and thus as
a hyperparameter.

The optimization problem in is identical to the loss function found in the
original VAE, except for the additional 8 term [KW13]. We may thus follow
the derivation in [KW13| to arrive at the final loss function:



M
L(O,¢;x)~B-=> (1+1log(o]) — 3 —03) + logpe(x|z)  (6)
j=1

N)\)—l

where o2, p are outputs of the probabilistic encoder corresponding to gs|x and
z=pu+0ooefor e ~N(0,I) according to the reparametrization trick also
outlined in [KW13]. The reconstruction loss term logpy(x|z) is a Monte Carlo
estimate using a single sample of e.

3 Model Architecture

We used convolutional neural networks as probabilistic encoders and decoders
for the distributions z ~ ¢4 |x and x ~ py|z, respectively.

3.1 Encoder Architecture

The encoder follows a standard convolutional neural network architecture as
outlined e.g. in |[DV16]. Its output are the parameters (u, log(o?)) for the
distribution z ~ gg4|x, thus the size of the output layer must be 2 - M. We
output log-variance for numerical stability for small variance values.
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Figure 1: Encoder Architecture

No non-linearity is used on the output layer in order for the last fully con-
nected layer to be able to output any range for u and log(o?). For details such
as the parameters on the convolutional layers and non-linearities, see the class
Encoder in models.py in |[Ano22a).

3.2 Decoder Architecture

The decoder mirrors the architecture of the encoder. Encoder layers are mir-
rored by the following decoder layers:



Encoder Layer

Decoder Layer

Fully Connected(a, b)

Fully Connected(b, a)

2D Max Pool(kernel size=k)

Interpolate(
scale factor=k,
mode="nearest’)

2D Convolution(
in channels=a,
out channels=b,
kernel size=k)

2D Transpose Convolution(
in channels=Db,
out channels=a,
kernel size=k)

These pairs are chosen to enable the decoder to closely model the inverse
of the encoder, as suggested in [DV16]. The last layer of the decoder uses a
sigmoid so that the outputs are in [0,1] as in the input images. For details
including the parameters on the convolutional layers and non-linearities used,
see the class Decoder in models.py in [Ano22a].

3.3 Loss Function

We use MSE to model the reconstruction loss —logpy(x|z), which is often used
as it is proportional to the log likelihood, including in the practical for this
course. It has been suggested that this is a mistake, as the variance of the
distribution is part of the proportionality constant, which shrinks during the
training process, and LMSE should be used instead [Yu20]. However, we did
not test the empirical consequences of this claim.

4 Dataset Choice

[Hig+17] uses a range of higher resolution datsets including CelebA. However,
we were only able to train using the MNIST dataset as well as our own Shapes
dataset due to very limited access to computational resources. MNIST was suf-
ficient for qualitative inspection of the reconstruction loss across varying values
of 3 and to test the authors conjecture about transfer learning (section [7)).

Prior to considerations about computational resources, we were planning
on using the CelebA dataset. This dataset might provide more interesting
independent generative factors, such as face rotations, lighting conditions, and
continuous facial characteristics. These independent generative factors could
have lead to better disentanglement results. Also, some of these factors might
be highly predictive of characteristics for which labels exist in CelebA, such as
glasses, hair colour and smiles, which could have improved our transfer learning
results.



5 Experiments and Results

We ran a variety of experiments inline with those of the original paper. This
included training beta-VAEs across various values of beta and latent-space sizes.
We explored the variation of KL Divergence Loss+ Reconstruction Loss, vary-
ing latent space size in the range [5,125] and 8 in the range [0.002,20]. As
expected, larger values of beta and lower latent space size both consistently
lead to larger test loss. Models showed good performance for low values of 8
(Figure . We also inspected reconstruction quality manually, with g in [0, 16]
in latent space sizes 2 and 10. This qualitative comparison shows the recon-
struction quality goes down significantly for higher values of 8. Quality already
goes down significantly for 8 = 2 in both cases, which might indicate that this
value or higher are not suitable for this particular dataset (Figure [3)).

Test Reconstruction + KL Losses for Shapes
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Figure 2: Consistently, models with higher normalised values of beta or lower
dimensional latent spaces have higher test loss. This is to be expected, since each
of these factors reduces the latent channel capacity. The orange line represents
the normalised value of beta that corresponds to a standard VAE (8 = 1) for
any given latent space size.
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Figure 3: First columns show the input images, consecutive columns show the
reconstruction using models trained with the corresponding beta values. Models
have latent space size 2 on the left, 10 on the right.

6 Disentanglement Quantification

One contribution of [Hig+17] is a novel disentanglement quantification score.
The measure scores each encoder, by quantifying how disentangled each of its
latent dimensions are. Given a dataset in which images x are generated by
x ~ Sim(v) where v is a chosen and known vector of independent generative
variables, we measure the disentanglement of an encoder enc as follows:

e Fix a chosen generative factor y, and generate a pair of generative vectors
vy and vg that match in dimension y.

Create two images x; ~ Sim(vy) and xa ~ Sim(va) and encode them to
get z1 = enc(x1) and zo = enc(xX2).

Calculate the difference between these two encodings: zqig = 21 — Z2

Repeat this process L times for fixed y, and take the average Zg;y .

Choose a new y, and repeat B times to create a dataset of zZq;s’s.



e Train a classifier to predict y from the vector Z4;ry. The accuracy of the
classifier is the disentanglement score

Further details of implementation of the score can be found in our GitHub
repository or in the original paper . In order to implement
the papers disentanglement measure, it is necessary to have a dataset with
well-defined generative factors. To this aim, we replicate the Shapes dataset.
Using four generative variables (v = [z,y, scale, rotation]), we create images
containing a white shape on a black background.

We ran a series of experiments, varying the normalised S,orm = 0 * % ,
where M is the size of the latent space and N is the size of the image (28228)).
We varied the normalised beta from 2e — 3 to 2el, and the latent space size from
5 to 125.

6.1 Disentanglement Quantification Results

Like the original experiments, our disentanglement measure demonstrates that,
excessively high values of beta reduce disentanglement score across the range of
latent space sizes. Similarly, they demonstrate that larger latent-space continue
to have high disentanglement at larger values of beta than lower dimension
latent spaces (Figure [4]).
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Figure 4: Color axis shows disentanglement score test accuracy



Unlike the original paper, we were unable to demonstrate that, for any par-
ticular latent-space size, raising the value of 3 increases the measured degree of
disentanglement. We have three hypotheses for why this might be the case:

Lower Resolution images To save on computational cost, our Shapes dataset
used 28x28 images, rather than the larger 64x64. Although normalising
beta should counteract some of this effect, it is possible that the difference
in results is a product of the simpler dataset. One of the impacts is that
we could not vary the generating factors as much, such as the position
and scale of the shape; another is that some variations like rotation are
not as easily discernible. With access to more computational resources,
we would experiment with higher resolution images, in which the effects
of changing generative variables is more distinct.

Insufficient experimentation Due to limited computational resources, we
were limited in the number of experiments we could run, and therefore
combinations of hyperparameter we could investigate. We explored 5 val-
ues of Bporm and 5 latent space sizes, requiring 25 experiments. [Hig+17]
were able to explore at least 400 hyperparameter combinations. With
greater computational resources, we would explore a wider range of values
(Bnorm € [0.00002,20.0]) at a higher resolution. It is possible that a finer
resolution of this hyperparameter search would have revealed an optimal
value for Borm as in [Hig+17).

Overly expressive classifier We can see that almost all of the models got
a near-perfect disentanglement score, successfully predicting nearly 100
percent of the y values. We can also see that the models that perform
poorly on the disentanglement metric are closely related to those that
perform poorly on the test loss. It is possible that all models which learn
to encode with reasonable success provide sufficient disentanglement for
the classifier to be able to detect. One improvement to our experiments
might be to reduce the power of the classifier. Since the classifier currently
consists of only a single layer, to reduce its complexity, it is not obviously
possible to reduce the number of parameters but harsh regularisation or
fewer epochs of training might reduce the models performance. It is not
clear that this reduction in performance would make the disentanglement
score more informative.

6.2 Qualitative Disentanglement Results

We ran qualitative experiments exploring disentanglement of five-dimensional
latent space with varying values of § on MINIST and our own Shapes dataset.

The experiments on MINIST showed that all dimensions are used to en-
code information correlated with the categorical distribution of digits - that is,
there was no dimension which could be varied without changing which digit was
represented. This effectively means that no two dimensions can be indepen-
dent, as the distribution over digits is categorical. If there were, for example,



a dimension encoding stroke thickness but nothing else, this could be indepen-
dent of other dimensions. We did not find any such dimensions in the latent
spaces for any value of 8, and thus have to conclude that there is no significant
disentanglement using 8-VAE on MINIST. Figure [5] shows variation of one la-
tent dimension. For every value of 3, information concerning the categorical
distribution is encoded: we see variation from the digit 0 to the digit 1. The
only relevant difference is the lower reconstruction quality for 8 = 2, specifically
blurrier constructed images.
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Figure 5: Rows show 8 = 0, 1, 2 from top down. Columns show varying one
dimension of a 5-dimensional latent space from -2.5 to 2.5

Qualitative inspection of disentanglement on our own Shapes dataset showed
better, though still not conclusive results. The setup remains the same as be-
fore, with 3 values 0, 1, 2 and a latent space size of 5. We can see notable
differences: for 8 = 0, we see at least two generative variables encoded in one
dimension, size and position. This is not the case for 5 = 1, which encodes only
the rotation of the heart shape (except for the fact that towards the origin, the
latent space always shows circles - this might be due to the fact that rotation
is hard to learn on such low-resolution images and thus the high-density area
around the origin matches position only but not rotation). Thus 8 = 1 seems
to show significantly better disentanglement than g = 0. With 5 = 2, however,
reconstruction of the heart fails and rotation is not captured at all; also, the di-
mension we varied does not seem to encode any significant information (Figure
@). Note that 8 = 1 corresponds to the standard VAE, thus these results fail to
show improvement by adding the hyperparameter S.

7 Transfer Learning

In the conclusion of the paper, the authors suggest that varying the value of beta
to more successfully disentangle the latent factors, might provide greater success
for supervised or transfer learning: ”We believe that using our approach as an
unsupervised pretraining stage for supervised or reinforcement learning will pro-
duce significant improvements for scenarios such as transfer or fast learning.”
[Hig+17]. A major benefit of transfer learning from an unsupervised problem
to a supervised problem is that it reduces the number of labels needed at the
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Figure 6: Rows show 8 = 0, 1, 2 from top down. Columns show varying one
dimension of a 5-dimensional latent space from -2.5 to 2.5

supervised stage to achieve high performance. We empirically investigate the
possibility that training classifiers using higher values of beta improves sample
efficiency. We trained 5-VAE with latent dimension sizes 2 and 10 on MNIST,
then fixed the weights of the encoder and trained a single layer linear regression
with softmax non-linearity to a one-hot encoded classification of digits. We did
this for different values of 8 and plotted test loss against supervised samples
used. [0
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Figure 7: Color axis shows disentanglement score test accuracy

Our results show that more samples generally lead to better performance.
They also show that increasing latent space dimension leads to improved per-
formance and that increasing beta too high reduces performance. This is to
be expected. They do show that increasing the value of 8 from 0 to 0.5 to 1
improves performance with latent space dimension 2 but do not robustly show
that sample efficiency in particular improves for any particular value of 5 > 1.
In fact, our results show that although the 8 € {8,16} models performed okay
with a large number of samples, they performed poorly with few samples: im-
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plying they are less sample efficient than the § = 1 model. We could therefore
not verify the claim that S-VAE could improve transfer learning results.
We discuss three hypotheses to explain our results:

MNIST does not have continuous generative factors The MNIST dataset
may have independent generating variables such as writing speed, tilt, or
pen thickness. However, the most important generative factor for this
transfer learning task is which digit has been written: taken from a dis-
crete categorical distribution. Therefore, tuning beta might make the
latent variables more individually representative of the continuous gener-
ative factors, but this might not aid in a classification task.

B =1 is appropriate for MNIST Our results do show that lower and higher
values of 8 lead to worse performance. It is possible that contingent fac-
tors about MNIST (its resolution, colour depth) make 8 = 1 appropriate
for learning disentangled representations. On more complex datasets, dif-
ferent values of # may be appropriate, necessitating the hyperparameter.

B-VAE does not significantly improve transfer learning It may also be
possible that learning disentangled representations is useful for interpretabil-
ity but not for transfer learning. This could be because the loss of infor-
mation from reduction in latent channel capacity dominates the gain from
simplicity of disentangled representations: especially if the classifier is
highly expressive.

With more computation time, we suggest performing transfer learning exper-
iments with our setup on the CelebA dataset: the dataset has many highly
independent generating variables as stated before, and has binary annotations
which can be used in the same unsupervised to supervised transfer learning
setup.

8 Interactive Demonstration

For better communication of the results, we aimed at building interactive demon-
strations of the conducted experiments (online at [Ano22b|, source at [Ano22c]).
We think interactive demonstrations can help communicate significant results in
machine learning to a wider audience, as well as allow experts to explore models
and data more efficiently. However, we found that the best current pipelines
for creating interactive demonstrations require a prohibitive time effort. We
used the ONNX format to export our models to javascript in order to run in
a browser; however, we found javascript implementations of ONNX are incom-
plete and poorly maintained. There is no interactive drawing library that works
well together with ONNX models, so we wrote our own minimal interactive
drawing library. The current interactive poster should be seen as a proof-of-
concept. Showing all results of this paper interactively would have required
building an interaction library for ONNX and would have taken a prohibitive
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amount of time. We suggest such an effort could improve machine learning re-
search and communication, including human interpretability of models through
easier exploration.

9 Conclusion

We have repeated the two important results of the given paper, training a VAE
with added hyperparameter § and disentanglement quantification using an ar-
tificial dataset. The quantitative results suggest that for the MNIST dataset, a
beta value of around 1.0 is optimal, which does not confirm better disentangle-
ment of S-VAE compared to regular VAE architecture. We have suggested this
may be due to the simplicity of the dataset, along with the categorical distribu-
tion of digits which does not lend itself readily to a disentangled non-categorical
latent distribution. We have also shown how to set up transfer learning using
a pre-trained encoder, and quantified results. We did not find a significant im-
provement of transfer learning using the MNIST dataset; again, we speculated
the reason for this may be the categorical distribution of MNIST, which does
not lend itself to be represented in a disentangled latent space, and listed other
possible reasons. We have suggested a procedure to test transfer learning using
a B-VAE encoder, which requires larger datasets and more compute time than
is available to us.
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