
Creating a GDPR compliant app for research

data collection

Dominik Koller

June 2022

Abstract

Collecting user data for research must be done transparently and with
complete user control over their data, for practical, ethical and legal rea-
sons. This project takes the EU General Data Protection Regulation
(GDPR) as a guideline for creating a data collection app for research,
describes possible ways of implementing features required by the GDPR
in a user-friendly way, including a fully working app implementing these
suggestions. The app collects iPhone and Apple Watch Health data as
well as self-reported mental wellbeing data on a server with full trans-
parency and user control. The process of data collection is demonstrated
and fully implemented in an iPhone app and AWS server. The type of
collected data is selected to facilitate follow-up work, in which I want to
investigate correlations between self-reported mood data and automati-
cally collected health data. The pipeline and data collected in this project
is ready to be analysed, with a fully functioning and tested connection in
python directly to the server API.

Contents

1 Motivation 2

2 User data collection in academic research 3

3 Design Challenges 3
3.1 Designing for Privacy . 3
3.2 Designing for Transparency . 4
3.3 Designing for User Control . 4

4 Legal Requirements 4

5 Examples 6
5.1 Success Examples . 6

5.1.1 PPD ACT . 6
5.1.2 Large-scale Wearable Data 7

1

5.1.3 Predicting Mental Illness Onset 8
5.2 Failure Example . 9

6 Reasearch App ’Anima’: Mental Wellbeing Prediction 9
6.1 Motivation . 9
6.2 Research Goals . 9
6.3 Collected Data . 10
6.4 Deleting Data . 10
6.5 Inspecting Data . 11
6.6 User Experience . 11
6.7 Code Architecture . 20
6.8 Data Storage and Security . 22
6.9 Data Pipeline . 23
6.10 Proof-of-concept Data Analysis 24

7 Follow-up work 25

8 Conclusion 26

9 Appendix 29
9.1 AnimaApp.swift . 29
9.2 AnimaModel.swift . 33
9.3 ContentView.swift . 36
9.4 HealthDataModel.swift . 41
9.5 HealthDataView.swift . 42
9.6 ViewModel.swift . 45
9.7 CustomSlider.swift . 50

1 Motivation

The primary objective of this project is to create an application and data
pipeline for collecting user data for research purposes.

Health-related data gathered from individuals is increasingly important in
many areas of research [Jim+20]. Collecting such data comes with significant
difficulties. Privacy of participants and transparency must be preserved (com-
pare [Ost+17]); data collection, transmission and storage must be secured; data
pipelines should be automated and scalable. In this project, I established design
principles to meet these challenges. These principles focus on the user experi-
ence from the perspective of the individual whose data is collected, as well as
the researcher who is to use the collected data. Legal requirements for data
collection differ widely in different jurisdictions; however, the European GDPR
is often seen as pioneering data protection law globally (eg [Dix18]) and is par-
ticularly restrictive for data collectors and protective of individual’s rights on
privacy and transparency [Gre18]. I will therefore use the GDPR as a guideline
for designing an ethically responsible data collection application. I will espe-
cially focus on designing a user experience that does not only legally follow the

2

requirements of the GDPR, but also follows the spirit of its design principles
around transparency and privacy every step of the way. The data gathered
is physical health data from a smartwatch and self-reported mental wellbeing
data, thus highly sensitive data, highlighting the importance of the established
design principles. It can be all collected on user’s devices and therefore show-
case a highly automated data pipeline. Using data collected by end-user devices
such as smartphones and smartwatches is a relatively new and promising field
of research in psychology [RD16]. While I believe we must be very cautious
about generating and using sensitive personal data - as reflected in the focus
on transparency and privacy in this project - I also believe there is potential
to innovate on prevalent methodology in quantitative psychology research us-
ing potentially very large datasets of human physiology and behaviour (eg see
[SAL20]). Predicting mental wellbeing is a step towards more comprehensive
approaches of diagnosis and perhaps even help in treatment of mental health.
With this project, I wish to provide a start in this direction, by building a data
pipeline and establishing ethical design principles for data collection.

2 User data collection in academic research

Collecting sensitive user data for academic research is often valuable and nec-
essary. Ethical, technological and legal challenges as well as user experience
design must all be taken carefully into consideration.

3 Design Challenges

Designing the User Experience for data collection apps means taking responsi-
bility of the relevant ethical and practical challenges from the user’s perspective.
We must design for privacy, transparency, and user control, all while mak-
ing using the application as easy and enjoyable as possible. In order to avoid
miscommunication and for ease of use, the user interface must be consistent,
important information always shown prominently, and pages with information
and controls must be easily reachable via clearly communicated buttons and
navigation.

3.1 Designing for Privacy

Respecting users’ privacy and data collection for research are by no means mu-
tually exclusive. I suggest three principles to maximise users’ privacy in this
project:

• Collect only the data you need. Every piece of data collected must be
actually needed for analysis. In the application for this project, where
I ask which kind of data is predictive of mental wellbeing, this means
collecting data strictly only in the timespan necessary for this analysis.

3

• Anonymize data where possible. Anonymization, however, is challenging
and often reversible [Ola+]. In this project, I will not collect any directly
identifying data, and will not attempt to actively anonymize any collected
data.

• Do not publish sensitive user data, especially if not anonymized or de-
anonymizable. When necessary, for example for journal submissions, data
may be made available to reviewers only - for example, see the Nature ed-
itorial ’Finding a sensible approach to sensitive data’ [18]. In this project,
no data will be made public.

3.2 Designing for Transparency

Transparency is the most important aspect of designing any digital services that
collect data: users have a right to know what they are signing up for when using
a product. At any point in the user experience, it is important to communicate
clearly what data is being collected and why. Also, users must have access to
data collected on them at all times. Designing for transparency also requires
following well-established user interface rules: text must be clearly visible, read-
able fonts must be chosen, and navigation to the relevant information must be
made clear and recognisable.

3.3 Designing for User Control

Users must have control over their data. Besides transparency, this includes
giving users as much choice as possibly in which data is collected, and giving
users the option to delete all their data. Deletion is crucial, also legally, as
discussed in section (4). Designing for control equally requires following well-
established user interface design rules: buttons for user actions must be clearly
visible as such, user interface elements must be consistent across the application,
all controls available to the user must also be clearly recognizable to the user.
Companies often use ’deceptive design’ patterns, designed to trick users into
doing things, such as giving consent to data collection [Yae16]. Such practices
have been partially banned, for example in California [Vin21]. In order to
design for user control, such dark patterns have to be avoided. When designing
an interface, the exact opposite must be the goal - to make sure that the user
does exactly what she intends to do at any point when using the application.

4 Legal Requirements

In this section, I will outline the legal requirements for a data collection appli-
cation when distributing to users, according to the GDPR1. I will not attempt
to summarize the GDPR in any way; instead, I will point out the parts relevant

1Note that the EU GDPR, which I reference here, is an EU regulation and does no longer
apply in the UK. In the UK, there is now the UK GDPR, which is in all aspects relevant to
this project identical to the EU GDPR.

4

to research data collection and this project in particular. The legislation is not
specifically aimed at research, but rather towards any actor collecting data in
the EU, such as private companies, government agencies as well as researchers.
Importantly, a University as a public body is required by the GDPR to have
a Data Protection Officer [16f]. Researchers may seek advice from their Data
Protection Officer, including which measures they are required to take in order
to fulfil their legal requirements. Article 5 of the GDPR states personal data
must be

processed lawfully, fairly and in a transparent manner in relation to
the data subject (‘lawfulness, fairness and transparency’) [16a]

Performing a ’task in the public interest’ for public research or ’legitimate inter-
ests’ for non-public authorities, charities and commercial organisations provides
a lawful basis for research (compare [20]).

For this project, ’lawfully, fairly and in a transparent manner’ is relevant
in three ways: regarding the right to be informed, the obligation for data mini-
mization, and the right to be forgotten. Recital (39) of the GDPR states

It should be transparent to natural persons that personal data con-
cerning them are collected, used, consulted or otherwise processed
and to what extent the personal data are or will be processed. The
principle of transparency requires that any information and commu-
nication relating to the processing of those personal data be easily
accessible and easy to understand, and that clear and plain language
be used. [16d]

The legal instructions here are quite clear: users must understand at each point
which data is collected and why. This applies to any research project and must
be followed for ethical and legal reasons. Regarding data minimization, the
GDPR states that data must be

adequate, relevant and limited to what is necessary in relation to the
purposes for which they are processed (‘data minimisation’) [16c]

and

collected for specified, explicit and legitimate purposes and not fur-
ther processed in a manner that is incompatible with those purposes;
further processing for archiving purposes in the public interest, sci-
entific or historical research purposes or statistical purposes shall, in
accordance with Article 89(1), not be considered to be incompatible
with the initial purposes (‘purpose limitation’). [16b]

In the context of research data collection, and this project in particular, this
means that we must only collect the data necessary to answer the research ques-
tion and communicate this requirement clearly to users. The third point in the
GDPR relevant to this project is the right to be forgotten. The GDPR states
that

5

a data subject should have the right to have his or her personal
data erased and no longer processed where [...] a data subject has
withdrawn his or her consent or objects to the processing of personal
data concerning him or her [16e]

To put this into context, this ’right to be forgotten’ has had a significant impact
on the global tech industry; for example, this recital was central in a lawsuit
of CNIL, the french data-protection regulator, against Google which CNIL won
[Eco19]. Notably however, the ’right to be forgotten’ does not apply to arguably
any data collection in research. The GDPR further states that even if this right
is exercised,

further retention of the personal data should be lawful where it is
necessary, [...] on the grounds of public interest in the area of pub-
lic health, for archiving purposes in the public interest, scientific or
historical research purposes or statistical purposes. [16e]

Specifically, this means that for scientific research purposes, the data controller
(your organisation, the University, represented by the Data Protection Officer)
typically does not have the obligation to delete personal data on user request.
However, I believe this ’right to be forgotten’ is still relevant to scientific research
and this project in particular. It highlights that if possible, we should respect
an individuals wish to delete their personal data. Even if this is in our case and
many others not legally binding, I suggest researchers should follow in the spirit
of the GDPR and make deletion possible whenever they can. For example, when
designing user interfaces, there should be a clear and accessible way for users
to request deletion; data pipelines should be built so that deletion is automated
and as complete as possible; and every case where data will not be able to be
deleted (such as when data is published, or after results depend on all data
being available for reproducibility) should be clearly communicated to users
beforehand. I will later suggest and implement an automation mechanism in
the data pipeline for deleting data which, to my knowledge, is novel in data
collection for scientific research; this is inspired (though as we have seen not
required) by the ’right to be forgotten’ in the GDPR.

5 Examples

In this section, I present other works relevant to this project, both regarding
ethical data collection and mood prediction.

5.1 Success Examples

5.1.1 PPD ACT

PPD ACT is an ’an app-based genetic study of postpartum depression’ which
sought to research post-partum depression (PPD) [Gui+18]. Researchers re-
leased an app in the US and Australian Apple App Stores to identify 7344 cases

6

of PPD and collect 2946 samples of DNA biokit data. Participants were asked
questions in order to identify PPD, and could then choose to be sent a DNA
spit testing kit which they would in return send to a lab. Researchers went to
great lengths in order to ensure transparency, consent and data security. Before
storing any data, users were informed of which data was collected and why;
the reading and understanding of this information was then checked by asking
questions the participants had to answer correctly to proceed. Participants then
’finger-signed’ an electronic consent document. Only then would the app collect
any data from participants. These steps were first taken when identifying PPD,
then repeated when participants were asked to order and submit the DNA sam-
ple. It was made clear at any point that participants could withdraw in the app
or via email. When withdrawn, a participant’s data including DNA data would
be deleted from all repositories. Data security was ensured by designing a cus-
tom database and access interface; data was encrypted on participants’ devices
with the researchers’ public key, sent to the server and stored encrypted, and
researchers could access the data via the custom interface and their private key.

This study offers a great example of how to collect data from participants
via automated pipelines while upholding ethical and legal standards regarding
transparency, consent and data security. This study was conducted in coopera-
tion with Apple.

5.1.2 Large-scale Wearable Data

In the paper ’Learning Generalizable Physiological Representations from Large-
scale Wearable Data’, researchers collect a large dataset of wrist accelerome-
ter and wearable ECG data (over 280,000 hours of data) and propose a novel
self-supervised and transfer learning technique to predict other variables asso-
ciated with an individual’s health, such as the maximal oxygen consumption
(VO2max), one of the best indicators for cardiovascular fitness [Spa+20]. The
method to inform participants and confirm their consent was done traditionally,
that is in person and not via a distributed application. Participants were given
specialized devices and not using their own peripherals. The study is relevant
for this paper in two ways: firstly, how this very large dataset was handled when
publishing the paper in a journal; secondly, the method of predicting seemingly
unrelated health variables from accelerometer and ECG data. Journals usually
ask researchers to publish data when anonymization is possible. In a talk I
attended, author Cecilia Mascolo stated that for this particular paper, the jour-
nal initially asked for publication of the full dataset. However, the researchers
insisted that the data could be de-anonymized and therefore should not be pub-
lished. Instead, they set up a procedure for reviewers to access their data and
other researchers to do so upon request. This is a great example of researcher’s
integrity where the customary protocol set out by a major scientific journal
failed to protect participant’s privacy. Methodologically, this paper presents a
pioneering approach to working with large scale datasets of continuously mea-
sured health indicators. In a first step, a sequential model is trained to predict
heart rate using accelerometer and past heart rate data. This data is relatively

7

easy to collect in very large quantities. Researchers postulate that in order
to predict a quantity as essential and interconnected with other health related
variables as the heart rate, an algorithm must essentially learn to represent the
general physical health state of an individual, at least to some degree. Thus,
they postulate that the last layer in the sequential model should contain infor-
mation about many other, seemingly unrelated health variables. This gives rise
to the next step, transfer learning from the last layer in the sequential model to
other variables, such as VO2max. Importantly, these are clinically significant
variables that are otherwise difficult to measure, especially in large quantities.
The transfer learning approach allows for learning the function from easy to
collect data to difficult to collect data while not requiring large datasets of the
latter. I suggest this is to be seen as an algorithm that learns a representation
of the general physical health state of an individual, which is an excitingly new
and extremely promising approach to health research. While the data I col-
lected in the course of this project is not nearly enough to use these models, my
data collection methods through their automation and scalability are suitable
for collecting and working with similarly large datasets. In followup work, I
would like to establish whether a similar transfer learning technique could be
used to predict not only indicators of physical health as researchers did in this
work, but also to predict indicators of mental health as I did in the present pa-
per. This is significant, especially given the symmetry of easy to collect physical
health data and difficult to collect mental health data.

5.1.3 Predicting Mental Illness Onset

In the study ’Predictive Modeling of Mental Illness Onset Using Wearable De-
vices and Medical Examination Data: Machine Learning Approach’, researchers
used sleep and other wearable data to predict mental illness onset [SSK22]. The
data for this study was obtained from society-managed health insurance mem-
bers in Japan, thus not specifically collected for this study. Data included large
sets of wearable data from Fitbit devices, as well as insurance claims regarding
mental illness. Research methods were not notably innovative, standard mod-
els for time series data were used. The relevant and novel parts of this study
were its size (37,856 time series and 4,612 individuals, however only 24 of which
exhibited mental illness onset) and the results. The large size of wearable data
of this study is one instance of a change in research methodology in psychology,
conducting quantitative research in areas where previously only qualitative re-
search was viable. The results are also intriguing: while not highly accurate, the
models showed moderate predictive power of mental illness onset. Importantly,
wearable data showed higher predictive power than medical examination data in
the same time spans. This is an important validation for the usage of wearable
data in mental health prediction, diagnosis and eventually treatment.

8

5.2 Failure Example

The most prominent example of misused research data was the Facebook - Cam-
bridge Analytica scandal [Mer18]. Researchers misled participants (and, in fact,
non-participants) by violating all principles I established above: transparency
was not given as many people were not informed that their data was being col-
lected at all; people whose data was being collected did not have any control
over which data was being collected nor were they given a possibility to opt
out or have their data deleted; data was being collected under a false pretext
of academic research when in reality it was used for political advertisement.
These are serious legal and ethical shortcomings which must be avoided in any
research setting (or in fact any setting at all).

6 Reasearch App ’Anima’: Mental Wellbeing
Prediction

6.1 Motivation

This app is intended to showcase the design guidelines discovered above. The full
data pipeline is operational, tested and actively employed. All design principles
are followed: users are informed on what data is collected and the reasons for
its collection (designed for transparency); they can always see all their collected
data and completely delete all data at any time (designed for user control). No
directly identifying information is collected or stored and only necessary data is
collected (designed for privacy), but also no active anonymization is performed;
users are made aware of this fact. Measuring and quantifying variables is tradi-
tionally very difficult in mental health research. No consistent biomarkers exist
for mental wellbeing in general, though recent work has made advances in that
direction [Gar+20]. Diagnosis of mental illness is often biased, eg by race or
gender [Gar21]. I suggest that we might be able to make diagnosis more reliable
by using behavioural data such as sleep and activity data, as well as continu-
ously measured physical health data such as heart rate and O2 saturation, and
learning a function from these time series data to variables related to mental
health. The example in section (5.1.3) suggests as much. It is therefore a valu-
able contribution to suggest a method for the relevant data collection, and to
find whether I can predict my own mental wellbeing given data I collected on
myself.

6.2 Research Goals

To demonstrate the full data pipeline from collection of user data to analysis
to results of a research project, this app aims to predict a one-dimensional
measure of mental wellbeing from data automatically collected by an iPhone
and an Apple Watch. The app is built to fulfil all requirements in order to
be published on the Apple Store (although I did not actually publish it). The

9

main goal was to create a fully functional data collection application with a user
interface that follows all established design principles; the secondary goal was
to analyse this data in order to predict mental wellbeing from physical health
and behaviour data.

6.3 Collected Data

The automatically collected data includes time-series data of Heart Rate, Exer-
cise Time, Headphone Audio Exposure, Environment Audio Exposure, Stair As-
cent Speed, Step Count, Walking Double Support, Walking Heart Rate, Walking
Speed, Step Length, and total Walking Distance. Those categories of data were
chosen as a subset of available data in the Apple HealthKit datastore; the choice
to include these was made somewhat arbitrarily; I found all of these could po-
tentially be interesting when related to mental wellbeing. This data is collected
automatically by an Apple Watch and an Apple iPhone and accessed via the
Apple HealthKit API. The app is run on an iPhone and accesses all data in the
same manner, whether collected on the phone or on the watch.

Wellbeing data is user-reported and collected on a one-dimensional scale. It
has been shown that one-dimensional measures of self-reported mental health is
associated with multi-dimensional measures of mental health and health prob-
lems ([Ahm+14]), suggesting that predicting a one-dimensional measure of men-
tal wellbeing is a valuable contribution and a starting point for more detailed
analysis.

HealthKit data is collected in a restricted time span only. This time span
ranges from one week prior to the first user-reported wellbeing measure up to the
last such user-reported measure. This is to reduce the amount of data collected
to the subset necessary for analysis.

Data is collected in combination with a unique anonymous user identifier.
No user email address, name, location, or any directly identifying information
is collected.

6.4 Deleting Data

In general, when users turn off collection of a specific type of data, all corre-
sponding entries are deleted on the device and on the server. No entries are
deleted from the Apple HealthKit storage, which is separate to this application.
Deletion of all data concerning a particular user is also possible, following a
more comprehensive approach. A clearly visible button in the user interface
for deleting all data opens an information page that informs the user they are
about to delete all their previously collected data. If they then choose to delete,
three things happen:

• all datapoints with that specific user identifier are deleted, on the server
and on the device

• a new user identifier is created for the device; the old one is deleted

10

• the old user identifier on the server gets added to a list of deleted user
identifiers

This approach ensures that the user choice to delete their data is stored via their
anonymous user id. Should there be any copy of the database in the pipeline
for any reason - a backup, cache, redundancy copy - it is always easy to ensure
that requested deletion is carried out throughout the whole data pipeline. I
built this mechanism, but did not have to use it in this project due to the
simple data pipeline and lack of copies or backups of my database. I have not
seen other research projects use similar mechanisms; however, I suggest when
building scalable automated data pipelines important user choices such as a
request for deletion should be both carried out immediately and stored for later
correction of potential mistakes (such as not deleting the corresponding entries
in a copy).

If there was a specific date fixed after which data cannot be deleted for valid
reasons, for example for publication of a paper, I suggest there should be a
notice included in the application stating that after a certain date, user data
cannot be deleted anymore in order to ensure reproducibility of results. This is
not the case for the current application; users can always choose to delete any
part or all of their data.

6.5 Inspecting Data

Users may inspect, change and delete any part of their self-reported mood data.
Any part of any record may be edited: date and time, valence, and additionally
a note (a data field I added just because I found it convenient to use as a journal
when recording my own mood data).

6.6 User Experience

The User Experience for this app focuses on delivering the established design
principles in an intuitive manner. At each point, users must understand at every
point when using the app

• which data is collected

• why data is collected

• which control they have over the data (including deletion).

In detail, when opening the app for the first time, a message screen explains
why this app collects data, what data it can collect, and how the data is used.
See figure (1). Then, users are presented with three tabs. The default tab
enables users to record their current mental wellbeing; when first opening this
tab, a helpful message tells the user what she can do in this tab. See figures
(2) and (3). In the recorded data tab, users can see, modify and delete all
their recorded mental wellbeing data. See figures (4), (5), and (6). Recorded
mental wellbeing includes the one-dimensional wellbeing measure, date and time

11

Figure 1: The welcome screen shows information and asks for consent to collect
data. Since this project does not have a site or reference number to refer to,
part of this text remains a placeholder text.

12

Figure 2: Upon opening the mood recording tab for the first time, a message is
shown explaining what the user can do here.

13

Figure 3: The user then lands on the page where she can self-report mood data.

14

Figure 4: Upon opening the mood data inspection tab for the first time, a
message is shown explaining what the user can do here.

15

Figure 5: In the mood data inspection tab, the user can view all mood data and
select individual records to edit or delete.

16

Figure 6: Having tapped a particular mood datapoint, the user may edit all its
fields. This includes the date and time, the valence, and an optional note.

17

of recording, and additionally a note which is stored with this particular data
point. The note feature was added simply as I found it convenient when using
the app for monitoring myself; I do not use it in any data analysis. Datapoints
can effortlessly be edited; their representation changes dynamically - a lot of
effort in this project went into making these interactions effortless.

The data collection tab gives the user information and full control over their
collected health data. First, a text explains why data is collected, which data
can be collected, how it is used, where it will be stored and which control the
user has over this data. Note that much of this information has already been
given on the first start of the app; the text here is more comprehensive and is
permanently displayed. See figures (7) and (8). It is explained that data is

Figure 7: In the Health Data tab, there is a detailed explanation for which data
is being collected and which control the user has over the data.

collected via the Apple HealthKit API. Users can select which type of data is
collected with granular control. Upon turning on access to a new type of data in
HealthKit, users are taken to the iPhone’s permission screen to allow access to
this particular type of data, as outlined in the Apple Developer Documentation

18

Figure 8: The user may select or deselect any category of data to be collected.
Upon deselection, data collection is stopped and existing data on the server is
deleted.

19

[App]. Users can also choose to enable all data to be collected, in which case
the authorization screen will appear only once. See figure (9). Disabling any of

Figure 9: Upon enabling collection of a particular data type, the user is sent
to the Apple HealthKit permission page where she can allow access to this
particular type of data.

these data types will do two things: it will stop sending new datapoints to be
stored on the server, and it will also delete any previously stored datapoints on
the server. This ensures that what the user sees is exactly which kind of data
exists on the server. Finally, on this tab users can delete all their data. This
action will not be done immediately. Instead, a sheet will open to explain what
deleting your data means. See figure (10).

6.7 Code Architecture

The application is built entirely in Swift. The architecture of the code follows
a strict Model-View-ViewModel pattern (MVVM). This ties in nicely with the
modern SwiftUI framework, which comes with multiple helpers in the form of

20

Figure 10: Before deleting, it is explained to the user what deleting their data
will do and what it will not do. Specifically, it will delete all their data in the
application and the server; it will not, however, delete any data in Apple Health.

21

property wrappers built specifically for this architecture pattern. The model is
defined in ’AnimaModel.swift’, and defines all possibilities to get and set data.
The viewmodel is defined in ’ViewModel.swift’. It references a model with the
@Published keyword; this takes care that changes to the model get propagated
to the UI automatically. The main views are defined in ’AnimaApp.swift’ and
’ContentView.swift’. The views in these reference a viewmodel with the @Ob-
servedObject keyword; this again makes sure that any changes get propagated
to the UI immediately. It would be out of scope for this project to explain
these patterns. I followed the patterns described in the Stanford course CS193p
(Developing Applications for iOS using SwiftUI) meticulously [Heg21]. Impor-
tantly, these patterns enabled me to handle all slow tasks asynchronously, such
as connecting to the server and synchronizing data, while the UI would be up-
dated automatically when data changes. This gives rise to a very smooth user
experience overall. Besides the Apple libraries SwiftUI and HealthKit, I used
the third party library and backend service Realm to synchronize data with
a server. I chose this over Apple’s own Core Data framework, as it proved
much more flexible; for example, Core Data only allows fully public or fully
private data which is not acceptable for this project. Realm provides automatic
database synchronization and full flexibility over permissions.

6.8 Data Storage and Security

Realm provides a fully functional server backend with a web interface. I used
their free tier MongoDB Atlas cloud service. The server location can be set
to be in the European Union, using Amazon AWS infrastructure. The server
was configured so that anonymous users may access only their own data. The
non-relational database is configured via a flexible schema; the schema for the
main type QuantitySample was this:

{

"title": "QuantitySample",

"bsonType": "object",

"required": [

"_id",

"_partition",

"quantityType",

"quantity",

"unit",

"startDate",

"endDate"

],

"properties": {

"_id": {

"bsonType": "string"

},

"_partition": {

22

"bsonType": "string"

},

"quantityType": {

"bsonType": "string"

},

"quantity": {

"bsonType": "double"

},

"unit": {

"bsonType": "string"

},

"startDate": {

"bsonType": "date"

},

"endDate": {

"bsonType": "date"

},

"productType": {

"bsonType": "string"

},

"sourceVersion": {

"bsonType": "string"

},

"sourceOperatingSystemVersion": {

"bsonType": "string"

},

"deviceName": {

"bsonType": "string"

},

"deviceModel": {

"bsonType": "string"

},

"motionContext": {

"bsonType": "int"

}

}

}

This defines all fields required of an Apple HealthKit quantity. Data was not
encrypted on the server; thus, trust is extended to AWS and Realm MongoDB,
not only the researchers.

6.9 Data Pipeline

Data is generated on the iPhone or Apple Watch, then stored in the Apple
HealthKit database on the iPhone. This is accessed by the application developed

23

for the iPhone using the HealthKit API. Data is then sent to a AWS server run
by MongoDB Atlas; Realm and its Swift library RealmSwift manage the data
synchronization. Data is then accessed by a python script via the Atlas Python
API. Data is never encrypted. It is stored in plain text on a AWS server in
the European Union. Users can always delete all their data in the pipeline; this
is fully automated, no action by a server administrator has to be taken. This
automation is important for the scalability of GDPR compliance: data of many
users may be collected without additional effort (except probably upgrading
from the MongoDB free tier, as requests are limited).

6.10 Proof-of-concept Data Analysis

Data can be accessed via the MongoDB python API:

import pymongo

from pymongo.server_api import ServerApi

from pprint import pprint

user = "********"

password = "********"

client = pymongo.MongoClient("mongodb+srv://"+user+":"+password+"

↪→ @cluster0.sq3ax.mongodb.net/?retryWrites=true&w=majority",

↪→ server_api=ServerApi(’1’))

db = client[’AnimaDB’]

pprint(db.list_collection_names())

[’QuantitySample’, ’MoodData’, ’DiscardedUserID’]

These results are a fully functioning proof-of-concept for follow-up work, in
which I plan to carry out more sophisticated analysis. Here, I find a positive
correlation between my average walking speed and self-reported mood data:

from datetime import datetime, timedelta

import numpy as np

moodData = db[’MoodData’]

quantitySamples = db[’QuantitySample’]

partition = "6201d3b322ecfa351e498dbf" # the anonymous user id

↪→ for my user

quantityType = "HKQuantityTypeIdentifierWalkingSpeed" # the

↪→ quantitytype I am interested in

delta = timedelta(days = 1.0) # the duration of physical health

↪→ data I am interested per sample

X = []

24

Y = []

for y in moodData.find({"_partition": partition}):

d = y["timestamp"]

start = d - delta

end = d

this pipeline will first filter for Walking Speed values in

↪→ the relevant time span

then, it will create a group object with a singular entry of

↪→ the average walking speed in that time span

pipeline = [

{"$match": {"_partition": partition,

"startDate": {’$lt’: end, ’$gte’: start},

"quantityType": quantityType} },

{"$group": {

"_id": 0,

"averageWalkingSpeed": { "$avg": "$quantity" }

}

}

]

averageWalkingSpeed = quantitySamples.aggregate(pipeline).next

↪→ ()["averageWalkingSpeed"] # this is a singleton group,

↪→ thus next() will get us the one grouped element, and ["

↪→ averageWalkingSpeed"] will return a float

X.append(averageWalkingSpeed)

Y.append(y["valence"])

npY = np.array(Y)

npX = np.array(X)

np.corrcoef(npY, npX)[0, 1] # correlation coeffifient

0.08949506568189569

7 Follow-up work

In follow-up work, I want to use this application and data pipeline to predict
a one-dimensional measure of mental wellbeing from automatically collected
physical health data. People generate data about themselves in abundance, yet
this data is mainly used for targeted advertising and selling products. I believe
that using personal wearable and health data for research and eventually to

25

improve mental health treatment is valuable and promising if done transparently
and ethically.

8 Conclusion

In this project, I set out to establish design principles for a data collection
application for research, to be published to individual study participants. I
established these principles based on the EU GDPR, and built an application
based on these principles, taking great care in the design of the user experience
and user interface to carefully consider the principles of transparency, privacy,
and user control. The data collection application is fully functional with an
operational backend server based on a non-relational database run on MongoDB
Atlas using a European AWS cloud server. I used the application to gather data
about myself, including Apple Health data from an iPhone and an Apple Watch.
Following my data pipeline, I imported data to python using the backend server’s
API. In a proof-of-concept data analysis, I found a positive correlation between
my average walking speed the day before self-reporting mood data and the
valence of the mood data.

References

[Ahm+14] Farah Ahmad et al. “Single item measures of self-rated mental
health: a scoping review”. In: BMC Health Services Research 14.1
(Sept. 2014). doi: 10.1186/1472- 6963- 14- 398. url: https:
//doi.org/10.1186/1472-6963-14-398.

[16a] Article 5(1)(a) of the General Data Protection Regulation. Euro-
pean Commission. Apr. 1, 2016. url: https://eur-lex.europa.
eu/legal- content/EN/TXT/HTML/?uri=CELEX:32016R0679&

from=EN#d1e3732-1-1 (visited on 06/17/2022).

[16b] Article 5(1)(b) of the General Data Protection Regulation. Euro-
pean Commission. Apr. 1, 2016. url: https://eur-lex.europa.
eu/legal- content/EN/TXT/HTML/?uri=CELEX:32016R0679&

from=EN#d1e3732-1-1 (visited on 06/17/2022).

[16c] Article 5(1)(c) of the General Data Protection Regulation. Euro-
pean Commission. Apr. 1, 2016. url: https://eur-lex.europa.
eu/legal- content/EN/TXT/HTML/?uri=CELEX:32016R0679&

from=EN#d1e3732-1-1 (visited on 06/17/2022).

[16d] Recital (39) of the General Data Protection Regulation. European
Commission. Apr. 1, 2016. url: https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=

EN#d1e3732-1-1 (visited on 06/17/2022).

26

https://doi.org/10.1186/1472-6963-14-398
https://doi.org/10.1186/1472-6963-14-398
https://doi.org/10.1186/1472-6963-14-398
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1

[16e] Recital (65) of the General Data Protection Regulation. European
Commission. Apr. 1, 2016. url: https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=

EN#d1e3732-1-1 (visited on 06/17/2022).

[16f] Recital (97) of the General Data Protection Regulation. European
Commission. Apr. 1, 2016. url: https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=

EN#d1e3732-1-1 (visited on 06/17/2022).

[RD16] Blaine Reeder and Alexandria David. “Health at hand: A system-
atic review of smart watch uses for health and wellness”. In: Jour-
nal of Biomedical Informatics 63 (2016), pp. 269–276. issn: 1532-
0464. doi: https://doi.org/10.1016/j.jbi.2016.09.001.
url: https://www.sciencedirect.com/science/article/pii/
S1532046416301137.

[Yae16] 2016 12:57 pm UTC Yael Grauer - Jul 28. Dark patterns are de-
signed to trick you (and they’re all over the web). July 2016. url:
https://arstechnica.com/information-technology/2016/07/

dark-patterns-are-designed-to-trick-you-and-theyre-

all-over-the-web/.

[Ost+17] Kirsten Ostherr et al. “Trust and privacy in the context of user-
generated health data”. In: Big Data & Society 4.1 (2017), p. 2053951717704673.
doi: 10.1177/2053951717704673. eprint: https://doi.org/10.
1177 / 2053951717704673. url: https : / / doi . org / 10 . 1177 /
2053951717704673.

[Dix18] Helen Dixon. “Regulate to Liberate: Can Europe Save the Inter-
net?” In: Foreign Affairs 97.5 (2018), pp. 28–32. issn: 00157120.
url: http : / / www . jstor . org / stable / 44823910 (visited on
06/27/2022).

[18] “Finding a sensible approach to sensitive data”. In: Scientific Data
5.1 (Nov. 2018). doi: 10.1038/sdata.2018.253. url: https:
//doi.org/10.1038/sdata.2018.253.

[Gre18] Samuel Greengard. “Weighing the impact of GDPR”. In: Commu-
nications of the ACM 61.11 (2018), pp. 16–18.

[Gui+18] Jerry Guintivano et al. “PPD ACT: an app-based genetic study
of postpartum depression”. In: Translational Psychiatry 8.1 (Nov.
2018). doi: 10.1038/s41398-018-0305-5. url: https://doi.
org/10.1038/s41398-018-0305-5.

[Mer18] Sam Meredith. Facebook-Cambridge Analytica: A timeline of the
data hijacking scandal. 2018. url: https://www.cnbc.com/2018/
04/10/facebook-cambridge-analytica-a-timeline-of-the-

data-hijacking-scandal.html (visited on 03/12/2022).

27

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e3732-1-1
https://doi.org/https://doi.org/10.1016/j.jbi.2016.09.001
https://www.sciencedirect.com/science/article/pii/S1532046416301137
https://www.sciencedirect.com/science/article/pii/S1532046416301137
https://arstechnica.com/information-technology/2016/07/dark-patterns-are-designed-to-trick-you-and-theyre-all-over-the-web/
https://arstechnica.com/information-technology/2016/07/dark-patterns-are-designed-to-trick-you-and-theyre-all-over-the-web/
https://arstechnica.com/information-technology/2016/07/dark-patterns-are-designed-to-trick-you-and-theyre-all-over-the-web/
https://doi.org/10.1177/2053951717704673
https://doi.org/10.1177/2053951717704673
https://doi.org/10.1177/2053951717704673
https://doi.org/10.1177/2053951717704673
https://doi.org/10.1177/2053951717704673
http://www.jstor.org/stable/44823910
https://doi.org/10.1038/sdata.2018.253
https://doi.org/10.1038/sdata.2018.253
https://doi.org/10.1038/sdata.2018.253
https://doi.org/10.1038/s41398-018-0305-5
https://doi.org/10.1038/s41398-018-0305-5
https://doi.org/10.1038/s41398-018-0305-5
https://www.cnbc.com/2018/04/10/facebook-cambridge-analytica-a-timeline-of-the-data-hijacking-scandal.html
https://www.cnbc.com/2018/04/10/facebook-cambridge-analytica-a-timeline-of-the-data-hijacking-scandal.html
https://www.cnbc.com/2018/04/10/facebook-cambridge-analytica-a-timeline-of-the-data-hijacking-scandal.html

[Eco19] The Economist. The French fine against Google is the start of a war.
2019. url: https://www.economist.com/business/2019/01/24/
the-french-fine-against-google-is-the-start-of-a-war

(visited on 06/12/2022).

[Gar+20] Maria Salud Garcia-Gutierrez et al. “Biomarkers in Psychiatry:
Concept, Definition, Types and Relevance to the Clinical Reality”.
In: Frontiers in Psychiatry 11 (May 2020). doi: 10.3389/fpsyt.
2020.00432. url: https://doi.org/10.3389/fpsyt.2020.
00432.

[20] GDPR and research – an overview for researchers. 2020. url: https:
//www.ukri.org/about-us/policies-standards-and-data/

gdpr-and-research-an-overview-for-researchers/ (visited
on 06/12/2022).

[Jim+20] Heather S. L. Jim et al. “Innovations in research and clinical care
using patient-generated health data”. In: CA: A Cancer Journal
for Clinicians 70.3 (Apr. 2020), pp. 182–199. doi: 10.3322/caac.
21608. url: https://doi.org/10.3322/caac.21608.

[Spa+20] Dimitris Spathis et al. Learning Generalizable Physiological Repre-
sentations from Large-scale Wearable Data. 2020. doi: 10.48550/
ARXIV.2011.04601. url: https://arxiv.org/abs/2011.04601.

[SAL20] Madeena Sultana, Majed Al-Jefri, and Joon Lee. “Using Machine
Learning and Smartphone and Smartwatch Data to Detect Emo-
tional States and Transitions: Exploratory Study”. In: JMIR mHealth
and uHealth 8.9 (Sept. 2020), e17818. doi: 10.2196/17818. url:
https://doi.org/10.2196/17818.

[Gar21] Howard N. Garb. “Race bias and gender bias in the diagnosis of
psychological disorders”. In: Clinical Psychology Review 90 (2021),
p. 102087. issn: 0272-7358. doi: https://doi.org/10.1016/
j.cpr.2021.102087. url: https://www.sciencedirect.com/
science/article/pii/S0272735821001306.

[Heg21] Paul Hegarty. CS193p (Developing Applications for iOS using Swif-
tUI). 2021. url: https://cs193p.sites.stanford.edu (visited
on 03/12/2022).

[Vin21] James Vincent. California bans ’dark patterns’ that trick users into
giving away their personal data. Mar. 2021. url: https://www.
theverge.com/2021/3/16/22333506/california-bans-dark-

patterns-opt-out-selling-data.

[SSK22] Tomoki Saito, Hikaru Suzuki, and Akifumi Kishi. “Predictive Mod-
eling of Mental Illness Onset Using Wearable Devices and Medical
Examination Data: Machine Learning Approach”. In: Frontiers in
Digital Health 4 (2022). issn: 2673-253X. doi: 10.3389/fdgth.
2022.861808. url: https://www.frontiersin.org/article/
10.3389/fdgth.2022.861808.

28

https://www.economist.com/business/2019/01/24/the-french-fine-against-google-is-the-start-of-a-war
https://www.economist.com/business/2019/01/24/the-french-fine-against-google-is-the-start-of-a-war
https://doi.org/10.3389/fpsyt.2020.00432
https://doi.org/10.3389/fpsyt.2020.00432
https://doi.org/10.3389/fpsyt.2020.00432
https://doi.org/10.3389/fpsyt.2020.00432
https://www.ukri.org/about-us/policies-standards-and-data/gdpr-and-research-an-overview-for-researchers/
https://www.ukri.org/about-us/policies-standards-and-data/gdpr-and-research-an-overview-for-researchers/
https://www.ukri.org/about-us/policies-standards-and-data/gdpr-and-research-an-overview-for-researchers/
https://doi.org/10.3322/caac.21608
https://doi.org/10.3322/caac.21608
https://doi.org/10.3322/caac.21608
https://doi.org/10.48550/ARXIV.2011.04601
https://doi.org/10.48550/ARXIV.2011.04601
https://arxiv.org/abs/2011.04601
https://doi.org/10.2196/17818
https://doi.org/10.2196/17818
https://doi.org/https://doi.org/10.1016/j.cpr.2021.102087
https://doi.org/https://doi.org/10.1016/j.cpr.2021.102087
https://www.sciencedirect.com/science/article/pii/S0272735821001306
https://www.sciencedirect.com/science/article/pii/S0272735821001306
https://cs193p.sites.stanford.edu
https://www.theverge.com/2021/3/16/22333506/california-bans-dark-patterns-opt-out-selling-data
https://www.theverge.com/2021/3/16/22333506/california-bans-dark-patterns-opt-out-selling-data
https://www.theverge.com/2021/3/16/22333506/california-bans-dark-patterns-opt-out-selling-data
https://doi.org/10.3389/fdgth.2022.861808
https://doi.org/10.3389/fdgth.2022.861808
https://www.frontiersin.org/article/10.3389/fdgth.2022.861808
https://www.frontiersin.org/article/10.3389/fdgth.2022.861808

[App] Apple. Authorizing Access to Health Data. url: https://developer.
apple.com/documentation/healthkit/authorizing_access_

to_health_data (visited on 02/13/2022).

[Ola+] Iyiola E. Olatunji et al. “A Review of Anonymization for Healthcare
Data”. In: Big Data 0.0 (0). PMID: 35271377, null. doi: 10.1089/
big.2021.0169. eprint: https://doi.org/10.1089/big.2021.
0169. url: https://doi.org/10.1089/big.2021.0169.

9 Appendix

9.1 AnimaApp.swift

import SwiftUI

import RealmSwift

let appid = "anima-owkag"

let app = App(id: appid)

@main

struct AnimaApp: SwiftUI.App {

let viewModel: ViewModel? = nil

var body: some Scene {

WindowGroup {

SyncContentView(app: app)

}

}

}

struct SyncContentView: View {

// Observe the Realm app object in order to react to login

↪→ state changes.

@ObservedObject var app: RealmSwift.App

var body: some View {

if let user = app.currentUser {

// If there is a logged in user, pass the user ID as

↪→ the

// partitionValue to the view that opens a realm.

OpenSyncedRealmView().environment(\.partitionValue,

↪→ user.id)

} else {

// If there is no user logged in, show the login view.

↪→ This effectively means the user has not seen

29

https://developer.apple.com/documentation/healthkit/authorizing_access_to_health_data
https://developer.apple.com/documentation/healthkit/authorizing_access_to_health_data
https://developer.apple.com/documentation/healthkit/authorizing_access_to_health_data
https://doi.org/10.1089/big.2021.0169
https://doi.org/10.1089/big.2021.0169
https://doi.org/10.1089/big.2021.0169
https://doi.org/10.1089/big.2021.0169
https://doi.org/10.1089/big.2021.0169

↪→ the initial greeting and introductino message.

↪→ Login in anonymous and handled by realm

LoginView()

}

}

}

struct LoginView: View {

// Hold an error if one occurs so we can display it.

@State var error: Error?

// Keep track of whether login is in progress.

@State var isLoggingIn = false

var body: some View {

VStack {

if isLoggingIn {

ProgressView()

}

if let error = error {

Text("Error:␣\(error.localizedDescription)")

}

NavigationView {

Form {

Section {

Text("By␣using␣this␣application,␣you␣are␣

↪→ helping␣us␣research␣-␣thank␣you!")

Text("This␣application␣collects␣sensitive␣

↪→ personal␣data␣about␣you.␣This␣

↪→ includes␣several␣categories␣of␣data␣

↪→ collected␣by␣your␣iPhone␣and␣Apple␣

↪→ Watch.␣You␣have␣complete␣control␣over

↪→ ␣which␣categories␣of␣data␣are␣

↪→ collected.␣This␣app␣also␣lets␣you␣

↪→ self-report␣mood␣data,␣which␣will␣

↪→ also␣be␣collected.␣All␣data␣is␣stored

↪→ ␣on␣our␣servers␣and␣will␣be␣used␣for␣

↪→ research.")

Text("You␣may␣always␣contact␣us␣to␣clarify␣

↪→ which␣research␣project␣you␣are␣

↪→ helping␣with␣-␣find␣our␣contact␣

↪→ information␣in␣the␣App␣Store.")

Text("This␣would␣be␣the␣point␣to␣give␣infos␣

↪→ about␣the␣research␣project,␣

↪→ identification␣number␣and␣so␣on␣-␣if␣

↪→ this␣project␣went␣through␣an␣ethics␣

↪→ committee␣and␣were␣distributed␣

30

↪→ publically␣which␣it␣is␣not.")

Text("By␣clicking␣Continue,␣you␣acknowledge␣

↪→ that␣you␣are␣aware␣this␣application␣

↪→ collects␣data␣from␣Apple␣Health␣as␣

↪→ well␣as␣your␣self␣reported␣mood␣data,

↪→ ␣which␣is␣sent␣to␣our␣servers.")

Button("Continue") {

// Button pressed, so log in

isLoggingIn = true

app.login(credentials: .anonymous) {

↪→ result in

isLoggingIn = false

if case let .failure(error) = result

↪→ {

print("Failed␣to␣log␣in:␣\(error.

↪→ localizedDescription)")

// Set error to observed property

↪→ so it can be displayed

self.error = error

return

}

// Other views are observing the app

↪→ and will detect

// that the currentUser has changed.

↪→ Nothing more to do here.

print("Logged␣in")

}

}.disabled(isLoggingIn)

}.navigationTitle(Text("Welcome!"))

}

}

}

}

}

/// This view opens a synced realm.

struct OpenSyncedRealmView: View {

// Use AsyncOpen to download the latest changes from

// your Realm app before opening the realm.

// Leave the ‘partitionValue‘ an empty string to get this

// value from the environment object passed in above.

@AsyncOpen(appId: appid, partitionValue: "", timeout: 10000)

↪→ var asyncOpen

var body: some View {

31

switch asyncOpen {

// Starting the Realm.asyncOpen process.

// Show a progress view.

case .connecting:

VStack {

Text("Connecting")

ProgressView()

}

// Waiting for a user to be logged in before executing

// Realm.asyncOpen.

case .waitingForUser:

ProgressView("Waiting␣for␣user␣to␣log␣in...")

// The realm has been opened and is ready for use.

// Show the content view.

case .open(let realm):

let viewModel = ViewModel(realm: realm)

ContentView(viewModel: viewModel)

// The realm is currently being downloaded from the

↪→ server.

// Show a progress view.

case .progress(let progress):

ProgressView(progress)

// Opening the Realm failed.

// Show an error view.

case .error(let error):

ErrorView(error: error)

}

}

}

struct ErrorView: View {

var error: Error

var body: some View {

VStack {

Text("Error␣opening␣the␣realm:␣\(error.

↪→ localizedDescription)")

}

}

}

enum Errors: Error {

case runtimeError(String)

}

struct SyncedContentView_Previews: PreviewProvider {

static var previews: some View {

32

// SyncContentView(app: app)

// .preferredColorScheme(.light)

LoginView()

}

}

9.2 AnimaModel.swift

import Foundation

import SwiftUI

import Realm

import RealmSwift

import HealthKit

struct AnimaModel {

let realm: RealmS

// Device-specific preferences:

let userDefaults = UserDefaults.standard

var isCollectingSampleDataDict: [String:Bool]

var isCollectingSampleDataDictKey = "

↪→ anima_collectingSampleData"

// in order to show error messages in any tab. Quite

↪→ simplistically, this will only allow a single error

↪→ message at a time, no queueing

var errorMessage: String?

var errorMessageIsPresented = false

init(realm: Realm?) {

if let realm = realm {

self.realm = realm

}

else {

self.realm = try! Realm()

}

isCollectingSampleDataDict = userDefaults.object(forKey:

↪→ isCollectingSampleDataDictKey) as? [String:Bool] ??

↪→ [:]

}

mutating func addMoodData(_ data: MoodData) {

33

try! realm.write {

realm.add(data)

}

}

mutating func changeMoodData(_ moodData: MoodData, with f: (_

↪→ moodData : MoodData) -> Void) {

let thawedRealm = realm.thaw()

try! thawedRealm.write {

if let data = moodData.thaw() {

f(data)

}

}

}

mutating func removeMoodData(_ data: MoodData) {

try! realm.write {

if let data = data.thaw() {

realm.delete(data)

}

}

}

mutating func addQuantitySamples(_ samples: [QuantitySample])

↪→ {

let thawedRealm = realm.thaw()

try! thawedRealm.write {

thawedRealm.add(samples, update: .modified)

}

}

mutating func removeQuantitySamples(ofType: HKQuantityType) {

let thawedRealm = realm.thaw()

try! thawedRealm.write {

let quantityType = ofType.identifier

// construct query to delete all objects of that

↪→ quantity type

thawedRealm.delete(realm.objects(QuantitySample.self).

↪→ filter("quantityType␣==␣’"+quantityType+"’"))

}

}

mutating func removeAllData(){

let thawedRealm = realm.thaw()

try! thawedRealm.write {

34

thawedRealm.deleteAll()

}

}

mutating func discardUser() {

try! realm.write {

let d = DiscardedUserID(value: app.currentUser?.id)

realm.add(d) // adds the current user as discarded

}

if let user = app.currentUser {

user.logOut()

}

}

func isCollectingSampleData(ofType sampleType: HKSampleType)

↪→ -> Bool {

return isCollectingSampleDataDict[sampleType.identifier]

↪→ ?? false

}

mutating func setCollectingSampleData(ofType sampleType:

↪→ HKSampleType, to newValue: Bool) {

isCollectingSampleDataDict[sampleType.identifier] =

↪→ newValue

userDefaults.set(isCollectingSampleDataDict, forKey:

↪→ isCollectingSampleDataDictKey)

}

// func allQuantitySamples(ofType: HKQuantityType) -> Array<

↪→ QuantitySample> {

// // note the filtering could be done faster using type unsafe

↪→ filtering using a string predecate (look at how realm

↪→ recommends to filter)

// Array(realm.objects(QuantitySample.self).filter {

↪→ quantitySample in

// quantitySample.quantityType == ofType.identifier

// })

// }

var allMoodData: Array<MoodData> {

Array(realm.objects(MoodData.self).sorted(byKeyPath: "

↪→ timestamp", ascending: true))

}

}

35

final class MoodData: Object, Identifiable, NSCopying {

@Persisted(primaryKey: true) var _id: ObjectId = ObjectId.

↪→ generate()

@Persisted var valence: Double

@Persisted var notes: String = ""

@Persisted var timestamp: Date = Date()

func copy(with zone: NSZone? = nil) -> Any {

let copy = MoodData()

copy.valence = valence

copy.notes = notes

copy.timestamp = timestamp

return copy

}

}

final class DiscardedUserID: Object {

@Persisted(primaryKey: true) var _id: ObjectId = ObjectId.

↪→ generate()

@Persisted var userId: String

}

struct AnimaModel_Previews: PreviewProvider {

static var previews: some View {

SyncContentView(app: app)

.preferredColorScheme(.light)

}

}

9.3 ContentView.swift

import SwiftUI

import RealmSwift

struct ContentView: View {

@ObservedObject var viewModel: ViewModel

@State var selection: String = "reporter"

var body: some View {

TabView(selection: $selection) {

HistoryView(viewModel: viewModel, editMoodData:

↪→ MoodData())

.tabItem {

Label("History", systemImage: "calendar")

36

}.tag("history")

MoodReporterView(addMoodData: viewModel.addMoodData)

.tabItem {

Label("Today", systemImage: "plus")

}.tag("reporter")

HealthDataView(viewModel: viewModel)

.tabItem {

Label("Data", systemImage: "heart")

}.tag("health␣data")

}

.alert("Something␣went␣wrong!", isPresented: $viewModel.
↪→ errorMessageIsPresented) {

if let errorMessage = viewModel.errorMessage {

Text(errorMessage)

}

Button("OK", role: .cancel) { }

}

}

}

struct HistoryView: View {

@ObservedObject var viewModel: ViewModel

@State var editingMoodData: MoodData? = nil

@State private var showingEditingSheet = false

@State private var showingFirstInfo = true

/// Selected task for updating status.

@StateRealmObject var editMoodData: MoodData

var body: some View {

ScrollView(.horizontal) {

HStack(spacing: 2) {

ForEach(viewModel.moodData) { data in

MoodDataView(moodData: data)

.accentColor(.green)

.onTapGesture {

editMoodData = data

showingEditingSheet = true

}

}

}

}

.sheet(isPresented: $showingEditingSheet) {

EditMoodDataView(data: editMoodData, viewModel:

↪→ viewModel, isShowing: $showingEditingSheet)

37

}

.alert("Browse␣Your␣Mood␣Data", isPresented:

↪→ $showingFirstInfo) {

Button("OK!", role: .cancel) { }

} message: {

Text("On␣this␣screen,␣you␣can␣browse␣all␣the␣mood␣data

↪→ ␣you␣have␣previously␣self-reported.␣Scroll␣left␣

↪→ and␣right␣to␣explore␣all␣your␣data.␣Tap␣on␣any␣

↪→ of␣the␣bars␣to␣edit␣or␣delete␣a␣particular␣entry

↪→ .")

}

}

}

struct MoodDataView: View {

@ObservedRealmObject var moodData: MoodData

var body: some View {

GeometryReader { geo in

VStack {

Spacer()

ZStack {

Color.accentColor

if (moodData.notes != "") {

ZStack(alignment: .bottomTrailing) {

Color.clear

Image(systemName: "rectangle.and.pencil.

↪→ and.ellipsis")

.padding(5)

}

}

}.frame(height: geo.size.height*moodData.valence)

}

}.frame(width: 100)

.contentShape(Rectangle())

}

}

struct MoodReporterView: View {

var addMoodData: (Double) -> Void

@State var sliderValue: Double = 0.5

@State var showingFirstInfo: Bool = true

var body: some View {

38

VStack(spacing: 0) {

CustomSlider(sliderValue: $sliderValue)
.accentColor(Color.green)

Button(action: {

addMoodData(sliderValue)

}, label: {

ZStack {

Color(hue: 0.3339, saturation: 0.7, brightness:

↪→ 0.6)

Image(systemName: "plus.circle")

.accentColor(Color.white)

.font(.system(size: 60))

}

}).frame(height: 100)

}

.ignoresSafeArea(edges: .top)

.onAppear {

sliderValue = 0.5

}

.alert("Report␣Your␣Mood", isPresented: $showingFirstInfo)
↪→ {

Button("OK!", role: .cancel) { }

} message: {

Text("On␣this␣screen,␣you␣can␣self-report␣your␣mood.␣

↪→ Drag␣the␣green␣bar␣up␣or␣down␣-␣up␣means␣you’re␣

↪→ doing␣great,␣down␣not␣so␣much.␣Hit␣the␣Plus␣

↪→ button␣to␣record!")

}

}

}

struct EditMoodDataView: View {

@ObservedRealmObject var data: MoodData

@ObservedObject var viewModel: ViewModel

@Binding var isShowing: Bool

// @State var valenceEditingValue: Double = 0.0

// @State var notesEditingValue: String = ""

@State private var showingAlert = false

var body: some View {

NavigationView {

VStack(alignment: .leading) {

Form {

39

Section {

// Text(data.timestamp, style: .time)

DatePicker(

"Time",

selection: $data.timestamp,
displayedComponents: [.date, .

↪→ hourAndMinute]

)

}

Section {

Text("Mood␣on␣this␣day:␣")

Slider(value: $data.valence)
.tint(.green)

// .onSubmit {

// viewModel.changeMoodData(data) { moodData in

// moodData.valence = valenceEditingValue

// }

// }

}

Section {

Text("Notes:")

TextEditor(text: $data.notes)
// .onSubmit {

// viewModel.changeMoodData(data) { moodData in

// moodData.notes = notesEditingValue

// }

// }

}

Section {

Button("Delete␣this␣entry", role: .

↪→ destructive) {

showingAlert = true

}

.alert(isPresented:$showingAlert) {

Alert(

title: Text("Are␣you␣sure␣you␣want␣

↪→ to␣delete␣this␣entry?"),

primaryButton: .destructive(Text("

↪→ Delete")) {

viewModel.removeMoodData(data)

isShowing = false

},

secondaryButton: .cancel()

)

}

}

40

}

}.navigationTitle(Text(data.timestamp, style: .date))

}

}

}

struct ContentView_Previews: PreviewProvider {

static var viewModel = ViewModel(realm: nil)

static var previews: some View {

// SyncContentView(app: app)

// .preferredColorScheme(.light)

Group {

ContentView(viewModel: viewModel)

.preferredColorScheme(/*@START_MENU_TOKEN@*/.dark/*

↪→ @END_MENU_TOKEN@*/)

}

}

}

9.4 HealthDataModel.swift

import Foundation

import HealthKit

import RealmSwift

class QuantitySample: Object, Identifiable {

@Persisted(primaryKey: true) var _id: String

@Persisted var quantityType: String

@Persisted var quantity: Double

@Persisted var unit: String

@Persisted var startDate: Date

@Persisted var endDate: Date

@Persisted var productType: String?

@Persisted var sourceVersion: String?

@Persisted var sourceOperatingSystemVersion: String?

@Persisted var deviceName: String?

@Persisted var deviceModel: String?

@Persisted var motionContext: Int?

convenience init(from quantitySample: HKQuantitySample,

↪→ quantityUnit: HKUnit) {

self.init()

41

self._id = quantitySample.uuid.uuidString

self.quantityType = quantitySample.quantityType.identifier

self.unit = quantityUnit.unitString

self.quantity = quantitySample.quantity.doubleValue(for:

↪→ quantityUnit)

self.startDate = quantitySample.startDate

self.endDate = quantitySample.endDate

self.productType = quantitySample.sourceRevision.

↪→ productType

self.sourceVersion = quantitySample.sourceRevision.version

self.sourceOperatingSystemVersion = String(quantitySample.

↪→ sourceRevision.operatingSystemVersion.majorVersion)

↪→ + "." +

String(quantitySample.

↪→ sourceRevision.

↪→ operatingSystemVersion

↪→ .minorVersion) + ".

↪→ " +

String(quantitySample.

↪→ sourceRevision.

↪→ operatingSystemVersion

↪→ .patchVersion)

self.deviceName = quantitySample.device?.name

self.deviceModel = quantitySample.device?.model

self.motionContext = quantitySample.metadata?[

↪→ HKMetadataKeyHeartRateMotionContext] as? Int

}

}

9.5 HealthDataView.swift

import SwiftUI

import HealthKit

struct HealthDataView: View {

@ObservedObject var viewModel: ViewModel

@State var showDeleteAlert = false

var body: some View {

NavigationView {

42

Form {

Text("Enable␣or␣disable␣health␣data␣to␣be␣collected

↪→ .␣When␣enabled,␣your␣data␣will␣be␣sent␣to␣

↪→ our␣server.␣This␣is␣to␣support␣a␣research␣

↪→ project,␣finding␣connections␣between␣

↪→ reported␣mood␣data␣and␣collected␣health␣data

↪→ .␣We␣do␣not␣collect␣or␣even␣have␣access␣to␣

↪→ directly␣identifying␣information,␣such␣as␣

↪→ your␣name,␣email␣address,␣or␣location.␣Data␣

↪→ is␣taken␣from␣Apple␣Health␣and␣collected␣by␣

↪→ your␣iPhone␣and␣Apple␣Watch.␣Data␣will␣be␣

↪→ collected␣only␣in␣the␣relevant␣timespans␣-␣

↪→ one␣week␣before␣your␣first␣self-reported␣

↪→ mood␣data,␣up␣to␣your␣last␣self-reported␣

↪→ mood␣data.␣When␣disabling␣any␣of␣these␣

↪→ categories,␣all␣data␣in␣that␣category␣will␣

↪→ be␣deleted␣from␣our␣server.␣No␣data␣in␣your␣

↪→ personal␣Apple␣Health␣database␣is␣edited␣or␣

↪→ deleted.␣You␣can␣also␣at␣any␣point␣request␣

↪→ complete␣deletion␣of␣your␣data␣from␣our␣

↪→ servers.")

.fixedSize(horizontal: false, vertical: true)

.padding(10)

Section(header: Text("Data␣to␣collect")) {

if(!viewModel.allQueryManagersEnabled) {

Button("Enable␣all") {

viewModel.enableAllQueryManagers()

}

} else {

Button("Disable␣all") {

viewModel.disableAllQueryManagers()

}

}

ForEach(viewModel.queryManagers) { queryManager

↪→ in

QueryToggle(query: queryManager)

}

}

Section {

Button("Delete␣all␣my␣data", role: .destructive

↪→) {

showDeleteAlert = true

}

}

43

}.navigationTitle("Health␣Data")

}.sheet(isPresented: $showDeleteAlert) {

NavigationView {

Form {

Text("Performing␣this␣action␣will␣delete␣all␣

↪→ collected␣data␣from␣this␣user␣on␣our␣

↪→ server␣and␣your␣phone.␣This␣includes␣all

↪→ ␣data␣we␣collected␣from␣your␣Apple␣

↪→ Health␣database␣as␣well␣as␣all␣your␣

↪→ reported␣mood␣data.␣You␣will␣not␣be␣able

↪→ ␣to␣recover␣your␣reported␣mood␣data.␣No␣

↪→ data␣from␣your␣Apple␣Health␣database␣

↪→ gets␣deleted␣-␣it␣will␣be␣deleted␣from␣

↪→ our␣servers,␣not␣from␣your␣personal␣

↪→ Apple␣Health␣database.␣If␣your␣data␣has␣

↪→ contributed␣to␣any␣analysis␣up␣to␣this␣

↪→ point,␣this␣contribution␣will␣not␣be␣

↪→ reversed␣in␣any␣way.␣We␣do␣not␣intend␣to

↪→ ␣publish␣or␣keep␣any␣data␣in␣any␣way␣

↪→ that␣prevents␣you␣from␣deleting␣your␣

↪→ data␣on␣our␣servers␣at␣any␣time.")

.textSelection(.enabled).padding(5)

Button("Delete␣All␣My␣Data", role: .destructive

↪→) {

viewModel.removeAllData()

viewModel.discardUser() // will add the user

↪→ ID to the list of deleted users and

↪→ log out!

showDeleteAlert = false }

}.navigationTitle("Deleting␣Your␣Data")

}

}

}

}

struct QueryToggle: View {

@ObservedObject var query: ViewModel.QueryManager

var body: some View {

Toggle(query.descriptiveName, isOn: $query.enabled)
}

}

struct HealthDataView_Previews: PreviewProvider {

static var viewModel = ViewModel(realm: nil)

44

static var previews: some View {

HealthDataView(viewModel: viewModel)

}

}

9.6 ViewModel.swift

import Foundation

import RealmSwift

import HealthKit

let healthStore = HKHealthStore()

class ViewModel: ObservableObject {

@Published private var model: AnimaModel

var queryManagers: [QueryManager] = []

init(realm: Realm?) {

model = AnimaModel(realm: realm)

queryManagers = possibleSampleTypes.map { (quantityType,

↪→ descriptiveName, unit) in

return QueryManager(sampleType: quantityType,

↪→ displayName: descriptiveName, unit: unit,

↪→ viewModel: self)

}

}

// Just a list of quantities that could be potentially

↪→ interesting. Hand picked, could be any values.

// TODO low prio I guess this should go into some config or

↪→ constants file

var possibleSampleTypes: [(HKQuantityType, String, HKUnit)] =

[(HKQuantityType(.heartRate), "Heart␣Rate", HKUnit(from: "

↪→ count/min")),

(HKQuantityType(.appleExerciseTime), "Exercise␣Time", HKUnit.

↪→ hour()),

(HKQuantityType(.headphoneAudioExposure), "Headphone␣Audio␣

↪→ Exposure", (HKUnit.decibelAWeightedSoundPressureLevel

↪→ ())),

(HKQuantityType(.environmentalAudioExposure), "Environmental␣

↪→ Audio␣Exposure", (HKUnit.

45

↪→ decibelAWeightedSoundPressureLevel())),

(HKQuantityType(.stairAscentSpeed), "Stair␣Ascent␣Speed",

↪→ HKUnit(from: "m/s")),

(HKQuantityType(.stepCount), "Step␣Count", HKUnit.count()),

(HKQuantityType(.walkingDoubleSupportPercentage), "Walking␣

↪→ Double␣Support", (HKUnit.percent())),

(HKQuantityType(.walkingHeartRateAverage), "Walking␣Heart␣

↪→ Rate", HKUnit(from: ("count/min"))),

(HKQuantityType(.walkingSpeed), "Walking␣Speed", HKUnit(from:

↪→ "m/s")),

(HKQuantityType(.walkingStepLength), "Step␣Length", HKUnit.

↪→ meter()),

(HKQuantityType(.distanceWalkingRunning), "Distance␣Walking",

↪→ HKUnit.meter())]

func isCollectingSampleData(ofType sampleType: HKSampleType)

↪→ -> Bool {

let manager = queryManagers.first { m in m.sampleType ==

↪→ sampleType }

return manager?.enabled ?? false

}

func setCollectingSampleData(ofType sampleType: HKSampleType,

↪→ to newValue: Bool) {

if let manager = queryManagers.first(where: { m in m.

↪→ sampleType == sampleType }) {

manager.enabled = newValue

}

}

var moodData: Array<MoodData> {

model.allMoodData

}

public func addMoodData(valence: Double) {

let moodData = MoodData()

moodData.valence = min(max(valence, 0.0), 1.0)

moodData.timestamp = Date()

model.addMoodData(moodData)

}

public func changeMoodData(_ moodData: MoodData, with f: (_

↪→ moodData : MoodData) -> Void) {

model.changeMoodData(moodData, with: f)

}

46

public func removeMoodData(_ moodData: MoodData) {

model.removeMoodData(moodData)

}

public func removeAllData() {

model.removeAllData()

}

public func discardUser() {

model.discardUser()

}

var errorMessageIsPresented: Bool {

get { return model.errorMessageIsPresented }

set { model.errorMessageIsPresented = newValue }

}

var errorMessage: String? {

get { return model.errorMessage }

set { model.errorMessage = newValue }

}

var allQueryManagersEnabled: Bool {

get { queryManagers.allSatisfy { m in m.enabled } }

}

func enableAllQueryManagers() {

healthStore.requestAuthorization(toShare: nil, read: Set(

↪→ possibleSampleTypes.map{ quantityType, _, _ in

↪→ quantityType })) { didAsk, error in

if let error = error {

print("oh␣no") // TODO handle error

} else {

for manager in self.queryManagers {

manager.enabled = true

}

}

}

}

func disableAllQueryManagers() {

self.queryManagers.forEach { queryManager in

queryManager.enabled = false

}

}

47

// TODO low prio think about the public interface of this

// -> which parts if any should be visible to the View?

// if none, should we have another type to interface with the

↪→ view?

// Public fields of this type are accessed by the view

class QueryManager: Identifiable, ObservableObject {

private var viewModel: ViewModel

var sampleType: HKSampleType

var descriptiveName: String

var unit: HKUnit

private var query: HKQuery?

init(sampleType: HKQuantityType, displayName: String, unit

↪→ : HKUnit, viewModel: ViewModel) {

self.sampleType = sampleType

self.viewModel = viewModel

self.descriptiveName = displayName

self.unit = unit

self.enabled = self.enabled // running the setter

}

var enabled: Bool {

get {

return viewModel.model.isCollectingSampleData(

↪→ ofType: sampleType) }

set {

// This will publish to the UI, thus do it on the

↪→ main queue

DispatchQueue.main.async {

self.viewModel.model.setCollectingSampleData(

↪→ ofType: self.sampleType, to: newValue)

}

if(newValue && query == nil) {

let newQuery = createQuery(type: sampleType)

healthStore.requestAuthorization(toShare: nil,

↪→ read: [sampleType]) { (didAsk, error) in

if let error = error {

print("oh␣no") // TODO handle error

} else {

if (self.query == nil) {

self.query = newQuery

healthStore.execute(newQuery)

48

}

}

}

}

else if (!newValue && query != nil) {

healthStore.stop(query!)

self.viewModel.model.removeQuantitySamples(

↪→ ofType: self.sampleType)

query = nil

}

}

}

private func queryResultsHandler(query:

↪→ HKAnchoredObjectQuery, samplesOrNil: [HKSample]?,

↪→ deletedObjectsOrNil: [HKDeletedObject]?, newAnchor:

↪→ HKQueryAnchor?, errorOrNid: Error?) {

guard let samples = samplesOrNil, let deletedObjects =

↪→ deletedObjectsOrNil else {

// TODO Properly handle the error.

return

}

DispatchQueue.main.async {

self.viewModel.model.addQuantitySamples(

samples

.compactMap { $0 as? HKQuantitySample }

.map { QuantitySample(from: $0, quantityUnit

↪→ : self.unit) }

)

}

}

private func createQuery(type: HKSampleType, from fromDate

↪→ : Date, to endDate: Date) -> HKQuery {

let predicate = HKQuery.predicateForSamples(withStart:

↪→ fromDate, end: endDate, options: .

↪→ strictStartDate)

let query = HKAnchoredObjectQuery(type: type,

predicate: predicate,

anchor: nil, // on app

↪→ startup, get all

↪→ data again. TODO

↪→ for performance

↪→ use an anchor

49

limit:

↪→ HKObjectQueryNoLimit

↪→ ,

resultsHandler:

↪→ queryResultsHandler

↪→)

query.updateHandler = queryResultsHandler

return query

}

}

}

9.7 CustomSlider.swift

import SwiftUI

struct CustomSlider: View {

@Binding var sliderValue: Double

@State private var offset: Double = 0

var body: some View {

GeometryReader { geo in

ZStack(alignment: .bottom){

Color.clear

Rectangle()

.foregroundColor(.accentColor)

.frame(height: geo.size.height * sliderValue)

}

.contentShape(Rectangle())

.gesture(DragGesture(minimumDistance: .zero)

.onChanged({ value in

let diff = value.translation.height - offset

sliderValue -= (diff / geo.size.height)

sliderValue = min(max(sliderValue, 0), 1)

offset = value.translation.height

})

.onEnded({ _ in

offset = 0

}))

.animation(.easeInOut(duration: 0.1), value:

↪→ sliderValue)

}

}

50

}

struct CustomSlider_PreviewWrapper: View {

@State var value: Double

var body: some View {

CustomSlider(sliderValue: $value)
}

}

struct CustomSlider_Previews: PreviewProvider {

static var previews: some View {

CustomSlider_PreviewWrapper(value: 0.3)

}

}

51

	Motivation
	User data collection in academic research
	Design Challenges
	Designing for Privacy
	Designing for Transparency
	Designing for User Control

	Legal Requirements
	Examples
	Success Examples
	PPD ACT
	Large-scale Wearable Data
	Predicting Mental Illness Onset

	Failure Example

	Reasearch App 'Anima': Mental Wellbeing Prediction
	Motivation
	Research Goals
	Collected Data
	Deleting Data
	Inspecting Data
	User Experience
	Code Architecture
	Data Storage and Security
	Data Pipeline
	Proof-of-concept Data Analysis

	Follow-up work
	Conclusion
	Appendix
	AnimaApp.swift
	AnimaModel.swift
	ContentView.swift
	HealthDataModel.swift
	HealthDataView.swift
	ViewModel.swift
	CustomSlider.swift

